Subgroups of locally finite products of locally nilpotent groups
نویسندگان
چکیده
منابع مشابه
Subgroups defining automorphisms in locally nilpotent groups
We investigate some situation in which automorphisms of a groupG are uniquely determined by their restrictions to a proper subgroup H . Much of the paper is devoted to studying under which additional hypotheses this property forces G to be nilpotent if H is. As an application we prove that certain countably infinite locally nilpotent groups have uncountably many (outer) automorphisms.
متن کاملInert subgroups of uncountable locally finite groups
Let G be an uncountable universal locally finite group. We study subgroups H < G such that for every g ∈ G, |H : H ∩H| < |H|.
متن کاملLocally Nilpotent Linear Groups
This article examines aspects of the theory of locally nilpotent linear groups. We also present a new classification result for locally nilpotent linear groups over an arbitrary field F. 1. Why Locally Nilpotent Linear Groups? Linear (matrix) groups are a commonly used concrete representation of groups. The first investigations of linear groups were undertaken in the second half of the 19th cen...
متن کاملlocally finite p-groups with all subgroups either subnormal or nilpotent-by-chernikov
we pursue further our investigation, begun in [h.~smith, groups with all subgroups subnormal or nilpotent-by-{c}hernikov, emph{rend. sem. mat. univ. padova} 126 (2011), 245--253] and continued in [g.~cutolo and h.~smith, locally finite groups with all subgroups subnormal or nilpotent-by-{c}hernikov. emph{centr. eur. j. math.} (to appear)] of groups $g$ in w...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1999
ISSN: 0017-0895
DOI: 10.1017/s0017089599000294